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The Massachusetts LEAP network: Building
a template for a hands-on advanced
manufacturing hub in integrated photonics

Samuel Felipe Serna-Otalvaro
Bridgewater State University
Massachusetts Institute of Technology
CHIRP research group
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.M. Bridgewater State University F_
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Rochester { HAMPSHIRE

» Founded in 1840

» Bridgewater State University was founded by Horace Mann, - | Erplim
the father of American education, driven by his belief in o A A
education as the great equalizer for all citizens. Today, INSYLVANIA| {
Bridgewater State University has over 10,000 current
students and over 70,000 alumni in all 50 states.
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» Located in Bridgewater, Massachusetts:
» 39 buildings on 278 acres

» 10th largest four-year college or university in
Massachusetts (out of 77)

™

» 11 residence halls and 1 student apartment on campus.
(Housing available for undergraduate, graduate and
continuing studies students.)
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Mt Some numbers at BSU

STATE UNIVERSITY

Our Faculty .
Demographics
Total Enroliment
» Undergraduate students: 9,463
——1. » Graduate students: 1,418
ative
Other/Mnxed Am::ca" . Tu'tal EI'Irﬂlll'I'I'EI'It: 1{},881
i *Fall 2019 numbers
. 0 °
18:1 22 361 93% 6:7
student/faculty average full- full-time average
ratio students time faculty male/female
per faculty holding faculty ratio
class a
doctoral
or other
terminal
degree

BSU is also named one of the top Fulbright-producing institutions -

https://www.bridgew.edu/sites/bridgew/files/media/pdf document/2019-
2020 Factbook BSU.pdf
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The Bartlett College of Science and Mathematics
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» https://www.youtube.com/watch?v=iWNpYIlmcTpA
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Optics, photonics, light...?

D.J. Lovell, Optical Anecdotes

" INDOUBTEDLY, NEARLY ALL WHO READ THIS BOOK HAVE,

) at one time or another, pondered the question, “What is light?" To
% answer, “Light is that which permits vision,” begs the question, for

8% such an answer provides us with no understanding of the nature of

light. It says no more than “light is light.”
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How does the future looks
“light”?

MOBILE PHONES
EVOLUTION

510 350 235 170 130 110 115 130 135 170
WEIGHT

pﬁiiiiiiDDDD

1985 1990 1995 2000 2005 2010 2015

CREDIT: Shutterstock/Alex Oakenman

Replacing copper with light: a silicon photonics wafer. CREDIT: Wikimedia Commons.



- Some Applications of Photonics GHJHIRP

Sensing

STATE UNIVERSITY

Four major areas of interest:

Datacom

* telecom/datacom

* RF analog applications
* chemical sensors

* LIDAR imaging

Application areas include
* Data Centers: high speed optical communication directly on chip surface

* Advanced Equipment like Drones: precision using integrated photonic circuits
* Food Safety and Medical Sensors: pathogen detection and biological sensing
*  Autonomous Vehicles: navigation driven by photonics-based LIDAR

* Think also about robotics, curved displays, augmented reality, communicatio




i Photonic Integrated Circuits (PICs)
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Nanophotonics ==
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Guided modes depend on waveguide dimensions
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Electric and magnetic fields
500 nm extend beyond the waveguide!
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Virtual Labs Tools

» https://s3.amazonaws.com/virtual-lab-silicon-waveguide/index.html

» https://s3.amazonaws.com/virtual-lab-radial-bend/index.html

» https://s3.amazonaws.com/virtual-lab-directional-coupler/index.html
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https://s3.amazonaws.com/virtual-lab-directional-coupler/index.html
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Where are the LEAP's ? ==
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LEAP Network: LEAPs in MA and the nearby community colleges they can serve:
Teaching with the educational kit from AIM Photonics Academy

"K L Sprmgfleld Techmcal CC h Mount Wachuse_t_t CE

LEAP@MIT: testing and
packaging

LEAP@WNE: testing, lasers,
and electronics

Qumsugamond cc \
LEAP@WPI/QCC: testing and ______

bio-medical sensing ; M' l 5 Cape Cod CC |

el 1 ’
; - LEAP@BSU: testing, lasers,
LEAP@Stonehill: materials long-wavelength/non-linear
characterization and PIC high speed applications i

testing BRIDGEWATER

S‘IA‘I’E UNIVEHSI“’

QUINSIGAMOND

Community College

|

e Y ¥As!

photonics

AMFRICAN INSTITIITF far MANIIFACTHRING INTEGRATFD PHOTONICS
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Photonics and Optics recognition and related Awards

2018 Award: MIT Office of Naval Research Grant subcontract for Photonics technician
training program: $200k

2019 Award: M212 MA capital equipment Grant establishes LEAP @ BSU for Photonics and
Optics-based cutting-edge equipment to support Industry and Research collaborations
toward additional work force development: $1.4M

III- -
Technology

MIT News Lt. Governor Karyn Polito visiting BSU
Deveney laser lab after announcing
$1.4 million grant MassTech award

LEAP @ BSU joins:
LEAP @ MIT
LEAP @ WPI/QCC
LEAP @ Stonehill

LEAP@STCC

Professional societies fund future photonics
technicians

IEEE, SPIE, and OSA will support students within a new program launched in
collaboration with MIT’s Initiative for Knowledge and Innovation in Manufacturing.




Il Integrated Photonics Bootcamp
=== BSU - MIT 2022

YOU WILL LEARN

Basic concepts in photonic devices
TE/TM propagation modes, light confinement, evanescence,

AN ACADEMY
on-chip guiding, and applications

’_ « P I— « P ’ N Prototyping using integrated circuit packaging
- et Die-bonding of surface-mounted components, X-ray
l—ml' @|Mlii .—‘ . R I et —— inspection, and reflow soldering
’M2|2 BRIDGEWATER i - . fa & S c . 2
S STt R » n Characterizing integrated photonic devices

Collect data from on-chip straight waveguides, ring
resonators, and Mach-Zehnder interferometers, and analyze

Integrated Photonics Hands-0On Integrated St s SO

Couple light into an SOI chip using edge coupling

is an emerging field. Photonics Bootcamp e TN W Gt oo

BEIEELENE
Software to characterize devices based on real test data

REGISTER' Virtual Lab simulations
= Game-based learning to build intuition about on-chip light

propagation and advanced manufacturing

A proliferation of new technologies in Passive integrated photonics bootcamp based
low-power cloud computing, ultra-high- on problem-based learning, to create a skilled
speed wireless, smart sensing, and workforceluf independent thinkers who can
) ) meet practical challenges.

augmented imaging have begun to

leverage the synergy of photonic and
electronic devices working in tandem
within an integrated circuit package.

As a result, critical curricular gaps are

Visit the AIM Photonics Academy
website and save your spot.

YOU NEED
ikim.mit.edu/bootcamps Laptop and lab notebook.

WHERE _ *Space is extremely limited [ 35

to only 12 registrants.

YOU GET TO KEEP

[=] . Manual with detailed descriptions of integrated
photonics experiments and exercises.

Massachusetts Institute of Technology (LEAP@MIT).
Bridgewater State University (LEAP@BSU).

Organizers
now becoming apparent in the training WHEN o - : COST
of engineers for these emerging S — | $6000 for three days of blended learning in
March 22-24, 2022. BRIDGEWATER integrated photonics.

industries.

STATE UNIVERSITY




s Organizers

STATE UNIVERSITY

Meet the INPHO-BOOT
visionaries, instructors
and technical
contributors

Prof. Juejun Hu

Dr. Kenan Cicek
Graduate stent Oramimte viont  Fubright schoe F 549 586 Prof. Kazumi Wada D Erk Veriage  Or. Jefirey Bertrand

BRIDGEWATER % " _
st icrophotonicsCentgr
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Our project https://mrl.mit.edu/article/team creates high-performance microchip technologies

BRIDGEWATER

STATE UNIVERSITY

H B Massachusetts
I I Institute of
Technology

Technology

/— Ial
g
Repairable Technology Demonstrator W@Wﬂ@f@ﬁj@@

7 Educate using
FUTUR-IC Green Innovation

Life Cycle Analysis Tool Kit
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What is Photonics and Optical Engineering?

» Photonics: Light, not electrons, on semiconductor integrated
chips. Less power consumption and higher bandwidth.

» Engineers: The design and development of devices using laser light in
sensors, LIDAR, telecommunications, processor chips, and other applications.

» A fast-growing sector of
New England's light-based economies.

» State’s only Photonics and Optical
Engineering Program degree
program started officially in Sept 2021!
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CAN YOU DO A PHOTONICS AND OPTICAL ENGINEERING MAIJOR IN 4 YEARS AT BSU? YEs!

_ Year Two Year Three Year Four
Fail Fail Fall Fail
PHYS 243 Gen Phys 1 4 PHYS 211 Machine Shop 1 PHOE 403 Semiconductor 3 PHOE 455 Advanced Optics | 3
Devices

MATH 161 Calculus 1 5 PHYS 416 Modern Theory | 3 PHOE 330 Fiber Optic 4 Senior Photonics Elective 3

with MATH 143 Communication

EMNGL 101 Writing 1 3 PHOE 301 Foundations of | 4 PHYS 438 Electricity and 3 Senior Photonics Elective 4
Photonics & Optical Eng. Magnetism

COMM 102 or THEA 3 MATH 2561 Multivariable 4 CHEM 141 Gen Chem 1 4 PHOE 483 Senior Design | 3

210 Calculus
CORE (CHUM, CWRT) 3 CORE (CHUM; CUSC) 3 CORE (CS0C; CGCL) 3

Totals 15 15 17 16

Spring Spring Spring Spring

PHYS 244 Gen Phys 2 4 PHOE 323 Optical 4 PHOE 450 PIC Design 3 Senior Photonics Elective 4
Engineering

MATH 162 Calculus 2 4 FPHOE 342 Digital 4 PHOE 420 Laser Engineering | 4 PHOE 484 Senior Design | 3
Electronics [CWRT])

First Year Seminar 3 FHYS 403 Mathematical 3 CORE (CHUM; CMCL) 3 CORE (CS0C; OGCL) 3

[CFPA) Methods

ENGL 102 Writing 2 3 Second Year Seminar 3 CHEM 142 Gen Chem 2 4 Major Elective / CORE 3
(CFPA; CSPE)

PHIL 111 Logical Reas. 3 PHYS 422: Computational | 3

(MATH 180/COMP 111) Methods

Totals 17 17 14 13

Major Requirements in Photonics and Optical Engineering: 44-47 Credits

Cognate Requirements in Physics, Mathematics and Chemistry: 41 Credits
Core Requirements or Electives outside Science & Mathematics: 36 Credits




BSU’s growing list of partners, supporters,
connections and collaborators: CEATER

Industry Federal and State National Lab and Academics

| B
alele ’_ . Manufacturing I I I | SUNY &'
== USA

b

i".:ll:lt:()ln NANTAA ©) Worcester Polytechnic Institute

Laboratory ‘,:lgt‘ yi " i -
_ phaotonics MIT
Pﬂlym 0 uth Grating S %
LABORATORY . ’
‘ US. Laboratory STONEHILL
\ / DEPT OF COLLEGE
@ angiodynamics o DEFENSE

QUINSIGAMOND WESTMORELAND
Community College RN COLLEGE

communiy COLLEGE
AN
reating a Spectruim ol Ay COLLABORATIVE
AIMACADEMY
IRADIiON

photanics
e
I Ceramic Core CO: Lasers =3

DRAPER | APDOLLO"™

FORWARD
PHOTONICS

HOTON
odmks

DRAPER | APOLLO® H.R.6227 - National Quantum Initiative Act UMass Lowell

115th Congress (2017-2018)

UMass Amherst

UMass Boston

UMass Dartmouth
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Set-up for dispersion, ultrafast and

nonlinear characterization at 1550 nm ;

Chromacity laser, picosecond
~5 ps @100 MHz

OPA Pump 1040 nm

From 1.4 um up to 4 um

Dr. Serna’s Group @ BSU

Nonlinear and Ultrafast Photonics

‘ asn ued>Sa2ADM

Angelo - 21’
Now Field Engineer at Kra




Optical characterization of on-chip |
ring resonators

BRIDGEWATER

STATE UNIVERSITY

ad00r

Dr. Serna’s Group @ BSU Brahmin and Jon — 21" Comsol
Use of an inspection IR camera Xenics adapted
Nonlinear and Ultrafast Photonics with the MapleLeaf Photonics system
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Enhancing SiN waveguide optical nonlinearity via hybrid GasS
integration
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Third-order nonlinear optical susceptibility of
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(57) ABSTRACT

Optical interconnects can offer higher bandwidih, lower
power, lower cost, and higher latency than electrical inter-
connects alone. The optical interconnect system enables
both optical and electrical interconnection, ges exist-
ing fabrication processes o facilitate packag | integra-
tion, and delivers high alignment tolerance and low coupling
Insses. The optical interconnect svstem provides connec-
tions between a photonies integrated chip (PIC) and a chip
carrier and between the chip carrier and external circuitry
The system provides a single flip chip interconnection
berween external circuitry and a chip carrier neing a ball grid
array (BGA) infrastructire. The system uses graded index
(GRIN] lenses and cross-taper waveguide couplers to opti-
cally couple components, delivers coupling losses of less
than 0.5 dB with an alignment tolerance of =1 pum, and
accommadates a 2.5x higher bandwidth density.
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Free-form micro-optics enabling ultra-broadband low-loss
fiber-to-chip coupling

Shaoliang Yu'', Luigi Ranno"’, Qingyang Du', Samuel Serna'?", Colin McDonough®,

Nicholas Fahrenkopf®, Tian Gu'#', and Juejun Hu'#

! Department of Materials Science & Engineering, Massachusetts Institute of Technology,
Cambridge, MA, USA
Department of Physics, Photonics and Optical Engineering, Bridgewater State University,
Bridgewater, MA, USA
‘The Research Foundation for State University of New York, State University of New York
Polyvtechnic Institute, Albany, NY, USA
‘Materials Research Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

T These authors contributed equally to this work.
*ssemaotalvarof@bridgew.edu, gutianf@mit.cdu

ABSTRACT

Efficient fiber-to-chip coupling has been a major hurdle to cost-effective packaging and scalable
interconnections of photonic integrated circuits. Conventional photonic packaging methods
relying on edge or grating coupling are constrained by high insertion losses, imited bandwidth
density, narrow band operation, and sensitivity to misalignment. Here we present a new fiber-to-
chip coupling scheme based on free-form reflective micro-optics. A design approach which
simplifies the high-dimensional free-form optimization problem to as few as two full-wave
simulations is implemented to empower computationally efficient design of high-performance
free-form reflectors while capitalizing on the expanded geometric degrees of freedom. We
demonstrated fiber array coupling to waveguides taped out through a standard foundry shuttle run
and backend integrated with 3-D printed micro-optics. A low coupling loss down to 0.5 dB was
experimentally measured at 1550 nm wavelength with a record 1-dB bandwidth of 300 nm
spanning O to U bands. The coupling scheme further affords large alignment tolerance, high
bandwidth density and solder reflow compatibility, qualifying it as a promising optical packaging
solution for applications such as wavelength division multiplexing communications, broadband
spectroscopic sensing, and nonlinear optical signal processing.

BRIDGEWATER,

Bridgewater Review
Volume 39 | Issue 1 Article 5
4-2020

The Responsibility of Scientists in Public Policy

Samuel S. Otalvaro
Bridgewater State University




s,

d H

=
g’l

TIDOERATER Problem Statement

STATE UNIVERSITY

Fiber array

Board or interposer

Module 2

Module 1

- —

Module 3

| s 2
! \

-— o wl

Fiber-to-chip \\thp-tO-Chlp, L

— -

Optical coupler requirements: low loss, broadband, high-density &
good alignment tolerance
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woewe | N€ PACkaging bottleneck

I H
i _
Si Ch]p Electronies

Modal fields of a Si waveguide (left) and
optical fiber (right)

Fiber Connector(s)
Assembly
Testing

° FormFactor Inc.




s COUPLING to a PIC: The Present

ST,

|||il- Edge coupling

Optical Fiber

Waveguide

IEEE Access, vol. 8, pp. 188284-188298, 2020

X Limited Bandwidth density
X Wafer-level testing incompatible
X Low alignment tolerance

Grating coupling

Grating coupler

IEEE Access, vol. 8, pp. 188284-188298, 2020
X High Insertion Loss (~ 3dB)
X Low Bandwidth ( ~ 30 nm)
X Polarization dependent

Each method has heavy downsides
/1-



.- Coupling to a PIC: A promising direction

STATE UNIVERSITY

Lensed 3D coupler

N .
I I I I I Photonic Wire Edge coupling beam-shapers

aliv: APL Photonics 4, 010801 (2019)
J. Lightwave Technol. 33, 755-760 (2015). Nat. Phot. 12, 241-247 (2018).

Multi-channel coupler Lensed reflective plane Tapered vertical coupler

Opt. Lett. 46, 4324-4327 (2021). Opt. Lett. 44, 5089-5092 (2019). Opt. Lett. 45, 1236-1239 (2020).

Proposed designs already caught up to the state-of-the-art

32



.. Micro-reflector for chip-to-fiber g

BRIDGE
STATE UNIVERSITY

Nt coupling

Light Out

| Fiber mode

Optical fiber

X

Reflected beam

Y (pm)

=

Wpered Reflector

Wi %‘(\’L \n Waveguide

Free-form reflector offering compact beam
reshaping and redirectioning




BRIDGE’

we Proposed fabrication route

STATE UNIVERSITY

Illll Fabrication Steps

— D=

Waveguide fabrication Trench etch

Simple and foundry-compatible

@ back-end fabrication

(=

Fiber attachment Two photon polymerization (TPP)




BDGEATER Two Photon Polymerization

STATE UNIVERSITY

I ey Substrate
I I UV sensitive Laser intensiy
negative resist e

i

Exposed voxel
Polymerization
threshold
120 fs pulsed
780 nm laser —~
(80 MHz)
slicing

distance

hatching
distance

3D CAD Model > Slicing

Hatching

UV laser

focal
plane

resin

> Printing

NIR laser

resin

Final Part
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Proposed Solution
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== Elliptical reflector
il Eve

Couples focused light from
one point to another

Parabolic reflector

<>

Transforms focused light
into a collimated beam
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woswrn—— EXperimental performance: Nitride taper
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A rn‘- Yu, S., Ranno, L., et al. (2023). Free-Form Micro-Optics Enabling
L VAAYA Ultra-Broadband Low-Loss Off-Chip Coupling. Laser & Photonics Reviews,

phaotonics 2200025. 40




sRDCEATER Fiber-to-chip couplers: Experimental Verification
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Chip-to-fiber coupling: Applications guire
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100 MHz, 80 fs
Menlo Systems

>8 kW coupled peak
power

Pulse shaping
~2 ps pulse duration

Minimal losses and high bandwidth make the couplers ideal for non-linear applications.

Yu, S., Ranno, L., et al. (2023). Free-Form Micro-Optics Enabling
Ultra-Broadband Low-Loss Off-Chip Coupling. Laser & Photonics Reviews,

2200025.
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socewe |deal chip-to-chip coupling interface
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 Broadband and efficient chip-to-chip or chip-to-interposer coupling
» Self-aligned thanks to the solder surface tension forces

s ~85% Coupling efficiency
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Chip-to-fiber coupling: Universal platform

Si waveguide
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wpaswe The case of silicon waveguides CHIRP

» The coupler achieves a low coupling loss of 0.8 dB for the fundamental TE
mode, along with 1 dB bandwidth exceeding 180 nm.

» Broadband and polarization-agnostic.

» Perfectly vertical fiber coupling implies compatibility with standard alignment
tools used in electronic packaging.

0
(b) | 0-band Laser | L-band Laser 10:838 01
B B PR R, > -1
—~ 2] €
3 3 D
> E 0 o -2
§ -4 1 o) 38 =
k) 5 0w 9 -1dBat 19 ym ~12.5 ym/dB
= © -4 o o
= - 9 i
W -6 ) Sw 3
()] £ ) I
é 5 c 6 [} g
G bandwidth > 130 nm =) PR 4
3 -8+ © w
(@) K2 -7 —6 -
C-band Laser s
-8
1300 1400 1500 1600 -4 =2 0 2 4 0 25
Wavelength (nm) Misalignment along X (um)

Ranno, L., Sia, J. X. B., Popescu, C., Weninger, D., Serna, S., Yu, S, ... & Hu, J.
(2024). Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon
photonics. Photonics Research, 12(5), 1055-1066. Editor’s pick
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= The TPP reflector on silicon was compared with an optimized grating coupler
= Also with an annealing test at 250 °C

Transmission (dB)

Performance tests CHIRP
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1540 1560 1580 1600 1540 1560 1580
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Ranno, L., Sia, J. X. B., Popescu, C., Weninger, D., Serna, S., Yu, S, ... & Hu, J.
(2024). Highly efficient fiber to Si waveguide free-form coupler for foundry-scale silicon
photonics. Photonics Research, 12(5), 1055-1066. Editor’s pick



BRIDGEWATER Vertical Optical Interconnect Comparison
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Grating 6.0 (TE) 1.25 (lateral) CEA-LETI: IEEE ECTC, pp. 557-562. (2017)
SUEIESEEE 2 (TE) > 2 2 (lateral) g 1009 iy IBM: IEEE J. Sel. Top. Quantum Electron. 24(4), 1-11 (2018).
6 wide
ic Wi 4-1.3 (TE >
TSI U B >0 nm / // KIT: Optica 5(7), 876-883 (2018).
Bond
Free-form 0.22 (TE)* >350 1.3 (lateral) 10 'c’_”g MIT-PMAT: J. Lightwave Technol. 38, 3358-3365 (2020)
0.25 (TM)* 35 (vertical) 30 wide
Evanescent < 1(TE/TM) ~ 60 4 (lateral) 1500 long Corning: vol. 39, no. 4, pp. 912-919, 15 Feb.15, (2021)
3 (vertical) 12 wide
Evanescent 0.2* 180 > 5(lateral) 200 long
0.5 (vertical) 15.3 wide MIT-QPL: arXiv:2110.12851 (2021).
1.5 deg (twist)
Evanescent 0.18 (TE)* > 300 ~3 (lateral/vertical) 500 long
> 250 (longitudinal) 1 wide
2.5 (twist) MIT-EMAT: Optics Express, Vol. 31, No. 2, pp 2819, (2023)
0.5 (tilt)

Evanescent VOI offers scaling of alignment and pitch for > 1 Pbps
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_Jm_ Conclusion GH!RP

» We experimentally demonstrated a coupling loss of 0.5 dB and 0.8 dB for SiN
and Si, representing the lowest loss figure reported for surface-normal
couplers at 1550 nm wavelength.

» Low loss, broad-band operation, high bandwidth density, as well as wafer-
scale testing and solder reflow compatibility qualify our approach as a
promising optical interfacing solution.

» No sign of optical damage for optical pulses up to 8 kW peak power.

» Nonlinear frequency generation and quantum photonics applications.
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