Transiting Exoplanet Survey Satellite (TESS): Designing a Sensor for Full Sky Mapping Exoplanet Detection

Kris Clark

April 6, 2016

TESS Goal: Find the <u>Nearest</u> <u>Earth-Like</u> Planets

- NASA Explorer Mission –August 2017 Launch
 - -2 year mission
 - -\$228M Mission Cost

TESS is a complementary, logical follow-on to Kepler and pre-cursor to James Webb Space Telescope (JWST) spectroscopy of exoplanets

- Science and Environment
- Instrument Design/Analysis
- Instrument Build/Test
- Path Forward
- Summary

A Bit of Background

Transit Method

TESS Detection Goals and Target Stars

- Discover transiting earths and super earths
 - Orbiting bright, nearby stars
 - Rocky planets and water worlds
 - Habitable planets

Habitable Zone

- Highly Elliptical Orbit provides extremely stable thermal environment
 - Attitude change for data downlink creates a temperature pulse
- Wide field-of-view and step stare observing provide near full sky coverage
 - Science orbit instrument pointing fixed in inertial space

TESS Orbit and Sky Scan

TESS Piece of the Exoplanet Puzzle

- Kepler
 - Estimate statistical population of exoplanets
 - Field-of-View (FOV) : 12 degrees
 - Faint stars (magnitude +12 to +16)

• TESS

- Provide catalog of exoplanets for further observation
 - Large FOV : Full sky coverage
 - Bright stars (magnitude +4 to +12)
- JWST
 - Atmospheric characterization of exoplanets
 - Small FOV : Arc minutes
 - Star magnitudes (magnitude +4 to +14)

Mission Choice	System Impact	TESS Choices
Full Sky Coverage	Number of Cameras	Field-of-View 4 x (24°x24°)
F,G,K,M Dwarf Stars	Spectral Band (600-1000nm)	O'Hara glasses 100µm Si depth CCD
Earth-Like Planets	Camera Sensitivity	Read Noise <20 e-
+4 to +12 Magnitude	Camera Dynamic Range	Full Well Capacity >150,000 e-
Light Curve Planet Detection	Imaging Performance	Brightest Pixel Flux Fraction >40% (on-axis)

Expected TESS Planet Detection Yields

- In two years, TESS is expected to discover:
 - ~30 Earth-sized planets
 - Handful in habitable zone
 - 100 small planets (R_P<2R_E) in or near JWST's Continuous Viewing Zone
 - ~300 Super-Earth planets
 - ~3,000 Sub-Neptunes
 - ~25,000 Neptunes and Jupiters

- Science and Environment
- Instrument Design/Analysis
- Instrument Build/Test
- Path Forward
- Summary

TESS Team and Timeline

Camera Structure Assembly (CSA)

- Four wide field-of-view cameras with flexure mounts
- Camera Plate Assembly
 - Camera Plate
 - Bipods
 - Purge Manifold
- Electrical and thermal harnesses

Data Handling Unit (DHU)

- Processes four camera streams simultaneously
- Processes and stores science and housekeeping data
- Generates quaternions for spacecraft fine pointing
- Processes spacecraft commands
- Passes stored science data to the Ka Transmitter

TESS Instrument Block Diagram

Camera 1 Camera 2 Camera 3 Camera 4 Lens Hood Lens Hood Lens Hood Lens Hood Lincoln Laboratory Lens Lens Lens Lens Assembly Assembly Assembly Assembly Detector Detector Detector Detector Assembly Assembly Assembly Assembly Lincoln Laboratory CCDs (4) CCDs (4) CCDs (4) CCDs (4) **Focal Plane Focal Plane Focal Plane Focal Plane Electronics Electronics Electronics Electronics** Video Video Video Video MIT Kavli Institute Auxiliary Auxiliary Auxiliary Auxiliary Interface Interface Interface Interface **Data Handling Unit** FPGA 1 FPGA 2 MIT Kavli Institute Solid State Processor/Software Recorder Spacecraft Ka-band **Spacecraft Master Avionics Orbital ATK** Transmitter Unit (MAU)

- Optical
 - Combine large field-of-view, spectral range, and collection efficiency
 - Suppress stray light (-70 dB)
- Mechanical
 - Align lens barrel to CCD
 - Maintain structural stability during launch
- Thermal
 - Isolate electronics (warm) from CCD/lens (cold)
 - Minimize thermal settling time after data downlink
- Structural Thermal Optical Performance (STOP) Modeling
 - Maintain camera pointing stability on orbit
 - Maintain Brightest Pixel Flux Fraction (BPFF) over field and temperature

Instrument Design

TESS Imager Summary

TESS Detector Assembly Summary

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

TESS- 19 KEC 4/6/2016

TESS Lens Design

PRELIMINARY DESIGN

6 LENSES

Characteristic	Value
FOV	24° x 24°
FL, f/#	146 mm, f/1.4
EPD	105 mm
Bandpass	600-1000 nm
On-axis throughput	86.5% (including filter)
Construction	7 elements (2 aspherical surfaces)
Filter	Thin-film cut-on filter (600 nm)
PSF	BPFF: 54% at 0° field angle 41% at 6° field angle 39% at 12° field angle 30% at 17° field angle
Operating Temperature	-75 C ± 10 C

TESS Lens Assembly Build

TESS Optical Test

Operational Camera Temperatures

Instrument Structural / Thermal Design Features

* Multi-Layer Insulation

STOP Modeling Process

Imaging Performance on Orbit

- Science and Environment
- Instrument Design/Analysis
- Instrument Build/Test
- Path Forward
- Summary

Instrument AI&T Flow

• RRU Lens Assembly Build – Pathfinder for Flight Build

Lens Inspection

Lens Edge Preparation

RRU Lens Build: RTV Pad Fabrication

Mix

Cut

RRU Lens Build – Lenses with RTV Pads

Fit Check

Pad Prep

Pad Cure

Pads on Lens

RRU Lens Build – Lenses in Bezels

Bezel Check

Lens Placement

Lens in Bezel Runout

RRU Lens Build – Barrel Assembly and Test

Lens Install

Lower Barrel Complete

Upper Barrel

Lens Complete

Interferometry

RRU Build – Completed Camera

Camera Installation in Thermal Vacuum Chamber

RRU Build – Vibration Testing

Primary objective – confirm lens build method

Defocus (microns)

- Science and Environment
- Instrument Design/Analysis
- Instrument Build/Test
- Path Forward
- Summary

- Risk Reduction Unit testing successfully completed
- First flight camera build underway

Thank You!!

- Division 7
 - Greg Allen
 - Jim Andre
 - Greg Balonek
 - Michael Beard
 - Cheryl Bourget
 - Daniel Bud
 - Jim Caisse
 - Chris Chesbrough
 - Michael Chrisp
 - Joe Dabrowski
 - Michael Dalpiaz
 - Joe D'Arco
 - Keith Doyle
 - Shelly Hazard
 - Melissa Hodson
 - James Hwang
 - Alexandra Karlicek
 - Jack Kartel
 - Frank Laquaglia

- Eui-In Lee
- Chuck Lewis
- Josh Lennon
- Bob MacDonald
- Tony Mormile
- Chris Nutting
- Jocelyn O'Brien
- Allison Pinosky
- Brian Primeau
- Justin Rey
- Michael Rolla
- Tom Roy
- Ralph Semonian
- Vishwa Shukla
- Pamela Wright
- Division 9
 - Greg Berthiaume
 - Tony Smith
 - Vyshi Suntharalingam
 - Deb Woods

- Division 8
 - Barry Burke
 - Joe Ciampi
 - Mike Cooper
 - Kay Johnson
 - Renee Lambert
 - Debbie Landers
 - Mo Neak
 - Kevin Newcomb
 - Dan O'Mara
 - Ilya Prigozhin
 - David Volfson
 - Keith Warner
 - Doug Yong
 - Microelectronics Lab
- Safety, MAO & PSO
 - Tom Bondaruk
 - Joe Kairouz
 - Parker Kimball
- Kavli Institute
 - Roland Vanderspek

- TESS promises to be a very productive, exciting science mission
- Multi-division, cross-discipline expertise has resulted in a robust, high performance design
- Risk Reduction Unit has paved the way for a smooth transition to flight build
- Looking forward to launch in 2017!