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Heat Engines

* Classical Heat Engines produce useful work by
extracting energy from a high temperature
energy source and rejecting entropy to a low
temperature entropy sink.

A Photo-Carnot Engine is a Carnot cycle engine in
which photons are the working fluid and the
piston is driven by radiation pressure. Quantum
coherence allows us to achieve thermodynamic
efficiency beyond the Carnot limit without
violating the second law.

e Laser and Photocell Quantum Heat Engines are
driven by thermal radiation and governed by the
laws of quantum thermodynamics.



Laser/Photocell Quantum Heat Engines
Timeline

1900 Planck Entropy of Thermal Light

1905 Einstein Photon Concept, 1917 Stimulated
Emission, Detailed Balance

1954 Gordon, Zeiger, and Townes First Maser
1959 Maser as a Quantum Heat Engine

1994 TAMU Lasing Without Inversion

2003 Photo-Carnot Quantum Heat Engine

2010 Photocell Quantum Efficiency Improved by
Quantum Coherence

2011 Laser and Photocell Quantum Heat Engines
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Quantum Thermo ||
Einstein studies Entropy of Light to Arrive at the Photon*
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Carnot Efficiency
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Photo-Carnot Engine

 Working Fluid(radiation) heated by two-level atoms

PV = hQn

«— Piston

Heat bath
Photo-Carnot engine =

Extracting Work from a Single Heat Bath via
Vanishing Quantum Coherence

M. Scully, M. Zubairy, G. Agarwal, and H. Walther

AYAAAS Science 299, 862 (2003):
DOI: 10.1126/science.1078955
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Single Mode = Single Atom

PV =KT (One atom)
PV =nQn n = KT
19
= KT (One mode)
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Rate equation for photon number ()

 With two-level atoms field,
n=alpg(n+1)— pppn]

* The steady-state solution is

high tempearture
1 1 hQ/kTH< 1 kT,

Pob _ 1 exp(hQ/kT,) — 1 " hO

paa

n =



asing Without Inversion
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(a) Use of quantum coherence in ground state b,c to cancel absorption

(@) Canceling absorption

(h) Canceling emission

(b) the use quantum coherence in the excited state a,b to cancel emission
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Laser Oscillation without Population Inversion in a Sodium Atomic Beam

G. G. Padmabandu,"** George R. Welch,* Ivan N. Shubin,! Edward S. Fry,"*" Dmitri E. Nikonov,'**

Mikhail D. Lukin,’? and Marl

an O. Scully'?3

"Texas Laser Laboratory, Houston Advanced Research Center, The Woodlands, Texas 77381
*Department of Physics, Texas A&M University, College Station, Texas 77843-4242
* Max-Planck-Institut fiir Quantenoptik, D-85748 Garching, Germany

(Received 29 August

1995)

Continuous wave (cw) amplification and laser oscillation without population inversion have been

observed for the first time in a A scheme within the sodium

D, line. This is also the first demonstration

in which the lasing medium was an atomic beam; this is
the physics, lays a foundation for extensions into the ul
structure were critical to the choice of experimental app
matrix calculations and clearly show there was no populat

Probe Transmission

“Continuous wave (cw)

amplification and laser oscillation
without population inversion have

been observed...”
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Photo-Carnot Engine

 Working Fluid heated by phaseonium

Photo-Carnot engine

Heat bath

LS

Phaseonium

Ng =N —¢§cos¢
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Rate equation for photon number (Il)

 With phased three level atoms(phaseonium) field,
Ny = a[zpaa(ﬁcp + 1) — (Pop + Pec + Ppe + pcb)ﬁd)]

* The steady-state solution is

high tempearture

7 ha/kTp<1 kT L 1P|
¢ hQ Paa
Ty : effective radiation temperature
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Efficiency of a Quantum Carnot Engine

/i Qin = T1512
ml L 7 n = Qin—Cout
5 |£bc| T. an
Th _ Tc 1 4 3 aa
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S n . T(pslz +TCS43
Temperature-entropy diagram for 2 TpS12
Carnot cycle engine. Tc |Pbc|
In the present QHE, Q;, is provided by = NnN——"n COS d)
the hot atomes. Th Paa

When T}, = T, the photo-Carnot engine
can still produce useful work if the
coherent three-level heat bath atoms are
“phased” such that ¢ = .
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Quantum Heat Engine
with and without Quantum Coherence

Laser Q. H. E.
Laser Q.H.E. by Scovil and Schulz-DuBois

_asing without inversion
Supercharged Quantum heat engine
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Laser Quantum Heat Engine (QHE)

PRL 2, 262 (1959) PHYSICAL REVIEW LETTERS

MarcH 15, 1959
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THREE -LEVEL MASERS AS HEAT ENGINES*

H. E. D. Scovil and E. O. Schulz-DuBois
Bell Telephone Laboratories,
Murray Hill, New Jersey
(Received January 16, 1959)
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week ending

PRL 106, 049801 (2011) PHYSICAL REVIEW LETTERS 28 JANUARY 2011

Marlan O. Scully
Texas A&M University
College Station
Texas 77843, USA and

Princeton University
Princeton, New Jersey 08544, USA
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Summary

e Efficiency from QHE can exceed the classical
Carnot Efficiency by using phased three-level
atoms.

e The Photo-Carnot QHE can produce work
from a single thermal bath.

e Efficiency of Laser QHEs can be increased by
guantum coherence.
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Photovoltaics Enhanced by Microwave
Induced Quantum Coherence

~*




Outline

* Solar Cell Energy

» p-nJunction Photocell
* Fundamentals

* Shockley and Queisser’s efficiency limit (detailed
balance)

* Quantum efficiency enhanced by
coherent driving

* Power enhanced by coherent driving
* Summary



pn-junction solar cell
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Solar cell losses

1. Photons with energy less then E, are not absorbed

2. Thermal relaxation, energy is lost to phonons
3. Losses due to finite temperature of the cell (thermodynamic)



Energy (eV)
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Solar spectrum with the bandgaps of
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Gregory F. Brown, and Jungiao Wu, Laser & Photon Review 3, No. 4, 394, (2009)



Quantum Dot Photo/Solar Cell
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Solar Cells and Detailed Balance

week ending

PRL 104, 207701 (2010) PHYSICAL REVIEW LETTERS 21 MAY 2010

S

Quantum Photocell: Using Quantum Coherence to Reduce Radiative Recombination
and Increase Efficiency

Marlan O. Scully

Texas A&M University, College Station, Texas 77843, USA
Princeton University, Princeton, New Jersey 08544, USA
(Received 18 November 2009; published 21 May 2010)

The fundamental limit to photovoltaic efficiency is widely thought to be radiative recombination which
balances radiative absorption. We here show that it is possible to break detailed balance via quantum
coherence, as in the case of lasing without inversion and the photo-Carnot quantum heat engine. This
yields, in principle, a quantum limit to photovoltaic operation which can exceed the classical one. The
present work is in complete accord with the laws of thermodynamics.

P. Wirfel, Chimia 61, 770 (2007)

“That leaves radiative recombination as the major [energy loss]
process. Can this be avoided? The answer is no. If a radiative upward
transition to generate the excitation is allowed, its reversal, the
radiative downward transition must be allowed as well.”



Solar cell with detailed balance

Population on levels c and v at temperature T_ lc) ’
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Solar cell with external coherence

External drive iy, = 7 (ecl — €, 2) N J/J\P‘Phonon excitation
hV(] Tl C1 —O—
Resonant interaction {) = w{ — v }[}{}Zi & |lod )
hv W °
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Detailed balance revisited

“That leaves radiative recombination as the major

[energy loss] process. Can this be avoided? The

Yes!
answer is-Re- If a radiative upward transition to

generate the excitation is allowed, its reversal, the

radiative downward transition faust-he-alewed-ac- ek’

can be mitigated by breaking detailed balance
via guantum coherence!



Summary

e Quantum coherence induced by an external
microwave field can increase the quantum efficiency
(open circuit voltage) of the photocell.

 Furthermore such a coherent driven photocell
generates more power. The extra power produced by
the device is much larger then that derived from the
microwave source which creates the coherence.

* Induced coherence results in more efficient
utilization of the pump photons by increasing
absorption and/or quenching unwanted emission.
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Noise induced quantum coherence

External source:

Lasing Without Inversion
Supercharged Quantum Heat Engine
No external field

Fano interference (quantum noise)

Agarwal (Fano-Harris) lasing without inversion



“..The preceding coherent drive model
illustrates the role of quantum coherence
in a simple way. However, it is possible to
generate coherence without the use of an
external field. For example, quantum noise
induced coherence via Fano coupling...”



Fano Interference |. LWI

VOLUME 62, NUMBER 9 PHYSICAL REVIEW LETTERS 27 FEBRUARY 1989

Lasers without Inversion: Interference of Lifetime-Broadened Resonances
S. E. Harris

Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305
(Received 23 September 1988)

We show that if two upper levels of a four-level laser system are purely lifetime broadened, and decay
to an identical continuum, then there will be an interference in the absorption profile of lower-level
atoms, and that this interference is absent from the stimulated emission profile of the upper-level atoms.

Laser amplification may then be obtained without inversion. Examples include interfering autoionizing
levels, and tunneling systems.
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Fano Interference Il. Tunneling
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Noise induced coherence

PHYSICAL REVIEW A 74, 063829 (2006)
Inducing quantum coherence via decays and incoherent pumping with application to population
trapping, lasing without inversion, and quenching of spontaneous emission

Victor V. Kozlov,"* Yuri Rostovtsev,' and Marlan O. SCLII]}’I'3 4

4 Steady state coherence

Y % P \.-"III?’ atp — \ Ya Vb p= HMac Hpe

a Pab = ) ?"a+ ?’b'l‘ 7a+ Y |4uuc||4ubc|

Optics Communications 281 (2008) 4940-4945

Coherence induced by incoherent pumping field and decay process in three-level
A type atomic system

Bao-Quan Ou*, Lin-Mei Liang, Cheng-Zu Li
a Steady state coherence
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Noise induced quantum coherence can double the laser
power at no extra cost!

Entropy  Energy
Sink Source

T T

hvlaser

h Vlaser = h Vh ( _I_;) I:)Iaser =7h (ﬁh _ﬁc)hvlaser l:1aser = 27/h (ﬁh _ﬁc )h Viaser




Noise induced coherence can double photocell power at
no extra cost!

Transparent  Quantum a T a T
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For proper cell design noise-induced coherence is robust
against environmental decoherence

0.04

Full coherence

0.03 -
y‘r:loyl

0.02

Cell power

No coherence
0.01

oo0¥—
0.0 0.5 1.0 1.5

Energy

Here ¥, is the fastest spontaneous decay rate. Fano interference
enhances the cell power even if ¥, is much larger than 7;.



Robustness of noise induced coherence

d T,.M, For microwave drive with
=~ ~ SIWWw .
NI ¢ Rabi frequency (1
N ” |l V2 .
VWWAT | I lj PlzzB
T,n I y
I | T
I 1
I | I
S S Noise induced coherence:
A7 2= WW
—b“ YTV TN,
LoD, iy — Ne VY172

4 Yr + nfu;)’/l/2

n,, is the phonon occupation number

Coherence can be large even if y; > 7, provided n,, > 1



Noise induced coherence
Ip
photosynthetic systems

Konstantin Dorfman, Dmitri Voronine, Shaul Mukamel, and Marlan Scully



Charge separation in photosynthesis
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Vol 44612 April 2007|d0i:10.1038/nature05678

LETIERS

Evidence for wavelike energy transfer through
quantum coherence in photosynthetic systems

Gregory S. Engel'?, Tessa R. Calhoun'?, Elizabeth L. Read"?, Tae-Kyu Ahn'?, Tomas Manéal'*1,
Yuan-Chung Cheng"?, Robert E. Blankenship®* & Graham R. Fleming '

RESEARCH|NEWS el

April 12, 2007

Quantum Secrets of Photosynthesis Revealed

Photon echo experiments reveal quantum coherence
in photosynthetic complexes



But: previous studies used lasers to induce quantum
coherence.

Can we get noise-induced quantum coherence in
photosynthetic complexes?



Coherence enhanced Electron flow in the
Reaction Center (PS I1) - Quantum Bio Heat Engine
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Oscillation of populations and current enhancement
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Conclusion:

noise-induced quantum coherence can enhance
electron transport yield in photosynthetic complexes
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Laser QHE App |

Entropy Energy o a .....
Sink Source \\ fiv .
|
Tc % Th% '|
1

Pop = Ve[ (1 + n:)Pgg — ePpp) + Yrl(1 + ) Paa — TnPob)

MQOS, Chapin, Dorfman, Kim, and Svidzinsky, PNAS 108 15097 (2011).
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App I

Laser QHE with noise induced coherence
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